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Considering an optical bistable system with cross-correlated additive white noise and multiplicative colored
noise, we study the effects of correlation between the noises on the correlation function C(s) using the
unified colored noise approximation and the Stratonovich decoupling ansatz formalism. The effects of the
self-correlation time τ of the multiplicative colored noise and the correlation intensity λ between the two
noises are studied with numerical calculation. It is found that C(s) increases with the increase of the
self-correlation time τ, but decreases with the increase of the correlation intensity λ. At large value of τ,
there is almost no change for C(s) when τ changes.
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It has been found that a nonlinear stochastic system can
have far-reaching consequence and cause interesting phe-
nomena. Though various noises are presented simultane-
ously in some stochastic processes, noises are assumed to
have different origins and are treated as independent ran-
dom variables in most of the previous investigations[1−5].
However, Fulinski et al. pointed out that noises in some
stochastic processes might have a common origin and
thus would not be independent[6]. Since then, many
researchers considered the cross-correlation between the
two noises when studying the statistical fluctuation prop-
erties, and the obtained results were in better agreement
with the experimental results[7−13]. In 1994, Bartussek
et al. studied the property of an optical bistable system
driven only by multiplicative noise[14]. In 2003, Mei et al.

studied the effects of correlations between additive and
multiplicative noise on the relaxation time in a bistable
system driven by cross-correlated noises[15]. Luo et al.

investigated stochastic resonance in a bistable nonlinear
system when both the multiplicative noise and the cou-
pling between the additive and multiplicative noise are
colored with different values of noise correlation time[16].
In 2004, Cheng et al. studied the stationary intensity
distribution of a single-mode laser cubic model driven by
colored pump noise with cross-correlation between the
real and imaginary parts of the quantum noise[17]. In
2006, Ning et al. investigated the transient properties of
an optical bistable system driven by multiplicative white
noise and additive white noise[18]. In this letter, the cor-
relation function of an optical bistable system with cross-
correlated additive white noise and multiplicative colored
noise is studied.

A model for purely absorptive optical bistability in
an optical cavity was introduced by Bonifacio and
Lugiato[19]. For the input light amplitude y and the trans-
mitted amplitude x, they derived the equation of motion
for the dimensionless variables as

dx

dt
= y − x −

2cx

1 + x2
= −

dU(x)

dx
, (1)

where the potential U(x) = −
∫

(y − x − 2cx

1+x2 )dx. The
parameter c is proportional to the inversion of the pop-
ulation of the atomic levels. For large c, the input-
output characteristics show the bistability. The potential
U(x) has two minima when the system exhibits optical
bistability[20].

For large value of c, choose input amplitude y to be
y0 within the regime of bistability, and take into account
fluctuations of the input amplitude y and the inversion c,
we assume these fluctuations are fast and can be modeled
by Gaussian noise, which are expressed as

y → y0 + η(t), (2)

c → c + ξ(t). (3)

The transmitted light amplitude is thus described by

dx

dt
= y0 − x −

2cx

1 + x2
+

2x

1 + x2
ξ(t) + η(t), (4)

where ξ(t) and η(t) are correlated in the forms as

〈η(t)〉 = 〈ξ(t)〉 = 0, (5)

〈ξ(t)ξ(t′)〉=
Q

2τ
exp(−

|t − t′|

τ
), (6)

〈η(t)η(t′)〉= Dδ(t − t′), (7)

〈η(t′)ξ(t)〉= 〈ξ(t′)η(t)〉 = λ
√

QDδ(t − t′), (8)

where Q and D are the intensities of noises of ξ(t)
and η(t), 〈〉 denotes the ensemble average, τ is the self-
correlation time of the multiplicative colored noise, and
λ is the correlation intensity between the two noises with
|λ| ≤ 1.

According to Eq. (4), the corresponding Fokker-Planck
equation is

∂P (x, t)

∂t
= LFPP (x, t), (9)

LFP = −
∂

∂x
F (x, τ) +

∂2

∂x2
G(x, τ). (10)
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The drift coefficient F (x, τ) and the diffusion coefficient
G(x, τ) are given by

F (x, τ) =
f(x)

R(x, τ)
+

K ′(x)

R2(x, τ)
−

R(x, τ)

R3(x, τ)
, (11)

G(x, τ) =
K(x)

R2(x, τ)
, (12)

where

f(x) = y0 − x −
2cx

1 + x2
, (13)

K(x) = Q
4x2

(1 + x2)2
+ 2λ

√

QD
2x

1 + x2
+ D, (14)

R(x, τ) = 1 − τ

[

f ′(x) −
1 − x2

(1 + x2)x
f(x)

]

. (15)

only considering the stationary state, the steady-state
probability density of Eq. (9) can be obtained as

Pst(x) = N
R(x, τ)
√

K(x)
exp

[
∫

f(x)R(x, τ)

K(x)
dx

]

, (16)

where N is the normalization constant.
According to the steady-state probability density ex-

pression [Eq. (16)] of the optical bitable system, the
effects of τ and λ on Pst(x) can be studied with the
numerical computation. Pst(x) with different values of τ
and λ are plotted in Figs. 1 and 2.

Figure 1 shows the steady-state probability density
Pst(x) as a function of x with different values of τ. It

Fig. 1. Steady-state probability density Pst(x) as a function
of x with different values of τ. (y0 = 14.2, c = 20.02, D =
0.32, Q = 0.35, and λ = 0.36).

Fig. 2. Steady-state probability density Pst(x) as a function
of x with different values of λ. (y0 = 14.2, c = 20.02, D =
0.32, Q = 0.35, and τ = 0.4.).

is seen that there are two peaks in Pst(x), and the left
peak is narrower than the right one. From Fig. 1, we
can also find that the larger τ is, the higher the left peak
is, and the lower the right one is. Figure 2 shows the
steady-state probability density Pst(x) as a function of x
with different values of λ. It is clear that the larger λ is,
the lower the left peak is, and the higher the right one is.

For a nonlinear stochastic system, the correlation func-
tion is

C(s) =
K(s)

〈(x(t) − 〈x(t)〉)2〉st
, (17)

where K(s) is the two-time correlation function and can
be expressed as[17]

K(s) = 〈x(t + s)x(t)〉st − 〈x(t)〉2st . (18)

The expectation value of the nth power of x is defined
as

〈xn〉st =

∫ +∞

0

xnPst(x)dx. (19)

Using the two-time correlation probability density
ω(x, t + s; x′, t), we get

〈x(t + s)x(t)〉st =

∫∫

xω(x, t + s; x′, t)x′dxdx′

=

∫∫

xPtran(x, t + s; x′, t)

Pst(x)x′dxdx′. (20)

Because the transition probability density Ptran(x, t +
s; x′, t) = exp(LFPs)δ(x − x′), we can obtain

〈x(t + s)x(t)〉st =

∫

xexp(L
FP

s)xPst(x)dx. (21)

Using Eq. (21), the derivative of the stationary correla-
tion function K(s) is

dK(s)

ds
=

∫

xL
FP

exp(L
FP

s)xPst(x)dx

=

∫

(L+
FP

x)exp(L
FP

s)xPst(x)dx. (22)

In terms of the adjoint operator L+
FP

of Eq. (10), using

the Stratonovich approximate[21], we get

1

K(s)

dK(s)

ds
=

〈

x(t)L+
FP

x(t)
〉

st

K(0)
, (23)

and

K(0) =
〈

(δx)2
〉

st
=

〈

(x(t) − 〈x(t)〉)2
〉

st
. (24)

The solution of Eq. (22) is K(s) = K(0)exp(−µs). The
correlation function is

C(s) =
K(s)

K(0)
= exp(−µs), (25)

where

µ =

〈

δx(L+
FP

)−1δx
〉

st

〈(δx)2〉st
. (26)

Making use of the correlation function of Eq. (25), the
effects of both τ and λ on the system can be analyzed by
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Fig. 3. Correlation function C(s) as a function of τ with
different values of λ. y0 = 14.2, c = 20.02, D = 0.32, and
Q = 0.35.

the numerical calculation.
Figure 3 shows the curves of C(s) as a function of the

self-correlation time τ of the multiplicative noise for dif-
ferent values of λ. It is known that C(s) is a measure of
correlation between x fluctuations at time t and t+s. As
shown, we can find that C(s) increases with the increase
of the self-correlation time τ. In other words, the decay
rate of the x fluctuation becomes slower and slower with
the increase of the self-correlation time τ. At large value
of τ, there is almost no change for C(s) when τ changes.
We can also find that the smaller the λ is, the larger the
C(s) becomes.

In conclusion, we investigate the effects of the self-
correlation time τ and the correlation intensity λ on the
statistical properties of optical bistable system. We find
that the correlation function C(s) increases with the in-
crease of the self-correlation time and decreases with the
increase of the correlation intensity λ.
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